superpcOut- or aespcOut-
class Object.getPathpVals.RdGiven an object of class aespcOut or superpcOut,
as returned by the functions AESPCA_pVals or
SuperPCA_pVals, respectively, return a data frame of the
\(p\)-values for the top pathways.
getPathpVals(pcOut, score = FALSE, numPaths = 20L, alpha = NULL, ...) # S3 method for superpcOut getPathpVals(pcOut, score = FALSE, numPaths = 20L, alpha = NULL, ...) # S3 method for aespcOut getPathpVals(pcOut, score = FALSE, numPaths = 20L, alpha = NULL, ...)
| pcOut | An object of classes |
|---|---|
| score | Should the unadjusted \(p\)-values be returned transformed to
negative natural logarithm scores or left as is? Defaults to |
| numPaths | The number of top pathways by raw \(p\)-value. Defaults to
the top 20 pathways. We do not permit users to specify |
| alpha | The significance threshold for raw \(p\)-values. Defaults to
|
| ... | Dots for additional arguments (currently unused). |
A data frame with the following columns:
terms : The pathway name, as given in the
object@trimPathwayCollection$TERMS object.
description : (OPTIONAL) The pathway description, as given
in the object@trimPathwayCollection$description object, if
supplied.
rawp : The unadjusted \(p\)-values of each pathway.
Included if score = FALSE.
... : Additional columns of FDR-adjusted \(p\)-values
as specified through the adjustment argument of the
SuperPCA_pVals or AESPCA_pVals functions.
score : The negative natural logarithm of the unadjusted
\(p\)-values of each pathway. Included if score = TRUE.
NULL
NULL
Row-subset the pVals_df entry of an object of class
aespcOut or superpcOut by the number of pathways requested
(via the nPaths argument) or by the unadjusted significance level
for each pathway (via the alpha argument). Return a data frame of
the pathway names, FDR-adjusted significance levels (if available), and
the raw score (negative natural logarithm of the \(p\)-values) of each
pathway.
### Load Data ### data("colonSurv_df") data("colon_pathwayCollection") ### Create -Omics Container ### colon_Omics <- CreateOmics( assayData_df = colonSurv_df[, -(2:3)], pathwayCollection_ls = colon_pathwayCollection, response = colonSurv_df[, 1:3], respType = "survival" )#> #>#>#>#> #> #>#> #> #>### Calculate Supervised PCA Pathway p-Values ### colon_superpc <- SuperPCA_pVals( colon_Omics, numPCs = 2, parallel = TRUE, numCores = 2, adjustment = "BH" )#>#>#>#>#>#>#>#>#>#>### Extract Table of p-Values ### # Top 5 Pathways getPathpVals( colon_superpc, numPaths = 5 )#> # A tibble: 5 x 3 #> terms rawp FDR_BH #> <chr> <dbl> <dbl> #> 1 KEGG_ERBB_SIGNALING_PATHWAY 0.0000187 0.000280 #> 2 PID_EPHB_FWD_PATHWAY 0.0000724 0.000403 #> 3 REACTOME_INSULIN_RECEPTOR_SIGNALLING_CASCADE 0.0000805 0.000403 #> 4 KEGG_NON_SMALL_CELL_LUNG_CANCER 0.000258 0.000968 #> 5 BIOCARTA_TNFR1_PATHWAY 0.00238 0.00713# Pathways with Unadjusted p-Values < 0.01 getPathpVals( colon_superpc, alpha = 0.01 )#> # A tibble: 6 x 3 #> terms rawp FDR_BH #> <chr> <dbl> <dbl> #> 1 KEGG_ERBB_SIGNALING_PATHWAY 0.0000187 0.000280 #> 2 PID_EPHB_FWD_PATHWAY 0.0000724 0.000403 #> 3 REACTOME_INSULIN_RECEPTOR_SIGNALLING_CASCADE 0.0000805 0.000403 #> 4 KEGG_NON_SMALL_CELL_LUNG_CANCER 0.000258 0.000968 #> 5 BIOCARTA_TNFR1_PATHWAY 0.00238 0.00713 #> 6 KEGG_ASTHMA 0.00430 0.0108