SubsetPathwayData.Rd
Given an Omics
object and the name of a pathway, return
the -omes in the assay and the response as a (tibble) data frame.
SubsetPathwayData(object, pathName, ...) # S4 method for OmicsPathway SubsetPathwayData(object, pathName, ...)
object | An object of class |
---|---|
pathName | The name of a pathway contained in the pathway collection in the object. |
... | Dots for additional internal arguments (currently unused). |
A data frame of the columns of the assay in the Omics
object
which are listed in the specified pathway, with a leading column for
sample IDs. If the Omics
object has response information, these
are also included as the first column(s) of the data frame, after the
sample IDs. If you have the suggested tidyverse
package suite
loaded, then this data frame will print as a tibble
.
Otherwise, it will print as a data frame.
This function subsets the assay by the matching gene symbols or IDs in the specified pathway.
data("colonSurv_df") data("colon_pathwayCollection") colon_Omics <- CreateOmics( assayData_df = colonSurv_df[, -(2:3)], pathwayCollection_ls = colon_pathwayCollection, response = colonSurv_df[, 1:3], respType = "survival" )#> #>#>#>#>#> #>#>#> #>SubsetPathwayData( colon_Omics, "KEGG_RETINOL_METABOLISM" )#> # A tibble: 250 x 48 #> sampleID EventTime EventObs RPE65 CYP3A5 UGT2B28 CYP4A11 CYP3A4 RDH8 #> <chr> <dbl> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 subj1 64.9 FALSE -0.721 1.05 0.598 0.844 1.03 -1.42 #> 2 subj2 59.8 FALSE 2.25 1.74 2.23 0.724 2.73 1.05 #> 3 subj3 62.4 FALSE 0.236 -0.651 -1.01 -1.88 -0.335 -1.13 #> 4 subj4 54.5 FALSE 0.221 0.541 1.40 3.00 1.54 -0.433 #> 5 subj5 46.3 TRUE 0.157 0.0710 -1.40 1.90 0.299 -1.43 #> 6 subj6 55.9 FALSE -0.744 -0.912 -0.803 0.645 -0.894 1.91 #> 7 subj7 58.0 FALSE -0.480 -0.543 -0.272 1.64 -0.0453 1.64 #> 8 subj8 54.0 FALSE -0.0133 -1.08 -0.746 0.268 -0.636 0.339 #> 9 subj9 0.427 TRUE -0.307 -0.149 0.825 -0.224 -0.453 -0.0897 #> 10 subj10 41.4 FALSE -0.300 1.81 0.430 0.356 0.774 0.955 #> # … with 240 more rows, and 39 more variables: DHRS3 <dbl>, CYP2C18 <dbl>, #> # ADH1B <dbl>, ADH1C <dbl>, ADH4 <dbl>, ADH5 <dbl>, DGAT2 <dbl>, ADH1A <dbl>, #> # RDH10 <dbl>, CYP26A1 <dbl>, CYP2C9 <dbl>, CYP2C19 <dbl>, CYP2C8 <dbl>, #> # CYP2B6 <dbl>, UGT2A3 <dbl>, CYP2A13 <dbl>, UGT1A1 <dbl>, CYP26B1 <dbl>, #> # DHRS9 <dbl>, DGAT1 <dbl>, ALDH1A1 <dbl>, RETSAT <dbl>, RDH12 <dbl>, #> # LRAT <dbl>, RDH11 <dbl>, CYP2A6 <dbl>, CYP2A7 <dbl>, CYP1A1 <dbl>, #> # CYP1A2 <dbl>, ADH7 <dbl>, ADH6 <dbl>, ALDH1A2 <dbl>, CYP3A43 <dbl>, #> # RDH16 <dbl>, RDH5 <dbl>, PNPLA4 <dbl>, UGT2B4 <dbl>, UGT2B17 <dbl>, #> # UGT2B15 <dbl>