GumbelMixpValues.RdCalculate the \(p\)-values of test statistics from a mixture of two Weibull Extreme Value distributions.
GumbelMixpValues(tScore_vec, pathwaySize_vec, optimParams_vec)
| tScore_vec | A vector of the maximum absolute \(t\)-scores for each
pathway (returned by the |
|---|---|
| pathwaySize_vec | A vector of the number of genes in each pathway. |
| optimParams_vec | The NAMED vector of optimal Weibull Extreme
Value mixture distribution parameters returned by the
|
A named vector of the estimated raw \(p\)-values for each gene pathway.
The likelihood function is equation (4) in Chen et al (2008): a
mixture of two Gumbel Extreme Value probability density functions, with
mixing proportion \(p\). Within the code of this function, the values
mu1, mu2 and s1, s2 are placeholders for the
mean and precision, respectively.
See https://doi.org/10.1093/bioinformatics/btn458 for more information.
# DO NOT CALL THIS FUNCTION DIRECTLY. # Use SuperPCA_pVals() instead. if (FALSE) { ### Load the Example Data ### data("colon_pathwayCollection") n_int <- lengths(colon_pathwayCollection$pathways) ### Simulate Maximum Absolute Control t-Values ### # The SuperPCA algorithm defaults to 20 threshold values; the example # pathway collection has 15 pathways. t_mat <- matrix(rt(15 * 20, df = 5), nrow = 15) absMax <- function(vec){ vec[which.max(abs(vec))] } tAbsMax_num <- apply(t_mat, 1, absMax) ### Calculate Optimal Parameters for the Gumbel Distribution ### optParams_num <- OptimGumbelMixParams( max_tControl_vec = tAbsMax_num, pathwaySize_vec = n_int ) ### Simulate Maximum Absolute t-Values ### tObs_mat <- matrix(rt(15 * 20, df = 3), nrow = 15) tObsAbsMax_num <- apply(tObs_mat, 1, absMax) ### Calculate Observed-t-score p-Values ### GumbelMixpValues( tScore_vec = tObsAbsMax_num, pathwaySize_vec = n_int, optimParams_vec = optParams_num ) }